英伟达GPU架构演进:从Tesla到Blackwell

JYGPU 极智算
2025年08月20日 2:46

早期架构:奠定基础

Tesla (2006)

Tesla架构是英伟达GPU发展史上的一个里程碑。它首次引入了统一着色器架构,使得GPU能够更灵活地处理图形和通用计算任务。更重要的是,Tesla架构伴随着CUDA(Compute Unified Device Architecture)并行计算平台的发布,这使得开发者能够使用C语言等高级语言直接在GPU上进行编程,极大地拓宽了GPU的应用范围,为后来的通用GPU计算(GPGPU)和深度学习奠定了基础。

Fermi (2010)

Fermi架构在Tesla的基础上进行了大幅改进,旨在更好地支持GPGPU和HPC应用。它引入了ECC(Error Correcting Code)内存支持,增强了双精度浮点运算能力,并改进了缓存层次结构,使其更适合科学计算和数据中心环境。Fermi架构的代表产品是GeForce GTX 480和Tesla M2050。

Kepler (2012)

Kepler架构专注于提升能效比和并行处理能力。它引入了SMX(Streaming Multiprocessor eXtreme)设计,增加了每个流式多处理器中的CUDA核心数量,并优化了时钟频率和功耗。Kepler架构在高性能计算领域取得了显著成功,例如K20X GPU被用于构建“泰坦”(Titan)超级计算机。

Maxwell (2014)

Maxwell架构进一步优化了能效,并改进了流式多处理器(SMM)的设计,提高了每个核心的性能。它在游戏和消费级市场表现出色,同时为后来的深度学习推理奠定了基础。代表产品有GeForce GTX 980。

Pascal (2016)

Pascal架构是英伟达为深度学习和HPC设计的关键架构。它引入了HBM2(High Bandwidth Memory 2)高带宽内存,显著提升了内存带宽,并首次集成了NVLink高速互联技术,实现了GPU之间的高速通信。Pascal架构的Tesla P100是首款专为数据中心设计的GPU,极大地加速了深度学习训练。

深度学习时代:Volta与Ampere

Volta (2017)

Volta架构是英伟达在AI领域的一次重大突破。它首次引入了Tensor Core(张量核心),这是一种专门用于加速深度学习矩阵运算的硬件单元。Tensor Core的引入使得Volta架构在AI训练性能上实现了数量级的提升,彻底改变了深度学习的格局。代表产品是Tesla V100。

Turing (2018)

Turing架构在Volta的基础上,将实时光线追踪(Ray Tracing)和DLSS(Deep Learning Super Sampling)技术引入消费级GPU。它包含了RT Core(光线追踪核心)和改进的Tensor Core,为游戏玩家带来了更逼真的图形效果和AI驱动的性能提升。代表产品是GeForce RTX 20系列。

Ampere (2020)

Ampere架构是英伟达为AI和HPC设计的又一重要架构。它进一步提升了Tensor Core的性能,并引入了第三代Tensor Core,支持更多数据类型。Ampere架构还改进了NVLink和多实例GPU(MIG)技术,使其在数据中心和云端AI推理及训练方面表现卓越。代表产品包括A100 GPU和GeForce RTX 30系列。

AI计算新纪元:Hopper与Blackwell

Hopper (2022)

Hopper架构是英伟达专为大规模AI和HPC工作负载设计的最新架构。它引入了Transformer Engine,进一步加速了Transformer模型(现代AI模型的核心)的训练。Hopper架构还采用了新的第四代Tensor Core和NVLink Switch,实现了前所未有的AI计算性能和扩展性。代表产品是H100 GPU。

Blackwell (2024)

Blackwell架构是英伟达最新的GPU架构,旨在应对万亿参数级AI模型的挑战。它在Hopper的基础上进行了多项创新,包括第二代Transformer Engine、新的NVLink Switch和RAS(可靠性、可用性、可服务性)功能。Blackwell架构的B200 GPU和GB200超级芯片旨在提供前所未有的AI训练和推理性能,进一步巩固英伟达在AI领域的领导地位。

总结:架构创新驱动行业发展

英伟达GPU架构的每一次演进,都不仅仅是性能参数的简单提升,更是对计算范式的深刻理解和前瞻性布局。从最初的图形渲染到通用并行计算,再到深度学习和AI,英伟达通过持续的硬件创新和软件生态建设,不断推动着GPU技术的边界,使其成为驱动现代科技进步不可或缺的核心力量。未来,随着AI和高性能计算需求的持续增长,英伟达的架构创新之路仍将继续,为人类探索更广阔的计算世界提供无限可能。

成都算力租赁入口:https://www.jygpu.com

成都算力租赁官方电话:400-028-0032


立即咨询极智算客服,获取专属您的2025年GPU服务器配置与报价方案,开启高效算力之旅!
算力租赁官方电话:028-65773958
猜你喜欢
自建GPU集群太烧钱?算力租赁如何帮你节省高达60%的AI训练成本!
看着AI模型训练任务清单越来越长,再看看自建GPU集群那令人心惊肉跳的账单和运维团队焦头烂额的模样,无数AI企业负责人和技术决策者都陷入了深深的焦虑。高昂的GPU集群前期投入、持续的电力消耗、复杂的维护升级,还有那看不见却真实存在的“闲置浪费”... 这些成本大山,是否正压得你的创新步伐越来越沉重?
2025年06月30日 6:30
AI浪潮下,算力租赁的关键作用与发展前景:成都如何抓住智算新机遇?
在全球AI浪潮中,大模型、AIGC(生成式AI)、自动驾驶等技术的爆发式发展,正以前所未有的速度重塑着各个行业的竞争格局。但所有从业者都清楚:​​AI的竞争,本质上是算力的竞争​​。从训练大模型需要数千张GPU集群,到AI推理对实时算力的高要求,算力缺口已成为制约AI落地的关键瓶颈。而在这场算力竞赛中,​​算力租赁​​作为一种轻资产、高灵活的创新模式,正从幕后走向台前,成为企业和机构突破算力限制的核心选择。
2025年07月10日 3:29
算力租赁:当数字时代的“水电煤”遇上灵活租赁模式,成都如何破局传统算力困局?
在数字经济高速发展的今天,算力已从“幕后工具”升级为“核心生产力”。从AI模型训练到工业互联网实时数据处理,从智慧城市交通调度到影视特效渲染,几乎所有数字化场景都离不开算力的支撑。然而,传统算力获取模式却像一道无形的枷锁——高额的前期硬件投入、复杂的运维压力、资源闲置与短缺并存的矛盾,让无数企业在数字化转型的路上“负重前行”。
2025年07月10日 3:34
算力租赁面临的挑战与应对策略分析:以成都为例
在AI大模型、元宇宙、工业互联网等技术浪潮的推动下,“算力”正从幕后走向台前,成为数字经济的核心生产要素。对于中小企业而言,自建算力中心的成本高、周期长,而算力租赁凭借“即用即付”的灵活性,迅速成为企业数字化转型的“轻资产”选择。然而,看似“双赢”的商业模式背后,隐藏着供需错配、技术壁垒、安全合规等多重挑战。尤其是在“东数西算”工程落地的背景下,成都作为西南地区算力枢纽节点,其算力租赁市场既承载着区域数字经济发展的厚望,也面临着更具地域特色的转型命题。
2025年07月10日 3:36
如何选择优质的算力租赁服务提供商?这5个策略帮你避坑
在AI大模型、元宇宙、生物医药研发等技术浪潮下,"算力"正从幕后走向台前,成为数字时代的"新石油"。但对于大多数企业或个人开发者而言,自建算力基础设施(如数据中心、服务器集群)成本高、周期长、维护难,​​算力租赁​​逐渐成为性价比更高的选择。
2025年07月10日 3:39
算力租赁VS购买算力:成本对比下的企业决策指南
在数字经济与AI浪潮的双重驱动下,算力已成为企业数字化转型的核心生产要素。无论是AI模型训练、大数据分析,还是区块链运算、高频交易,企业对算力的需求正呈现指数级增长。
2025年07月18日 2:38
私有云:企业数字化转型的“安全堡垒”与“效率引擎”
私有云是一种由企业独立掌控的云计算环境,其核心在于资源的专属性与可控性。与公有云不同,私有云的基础设施(服务器、存储、网络)可部署在企业本地数据中心或由第三方托管,但管理权始终归属企业自身。这种模式既能享受云计算的弹性与效率,又能满足金融、医疗等行业对数据主权、合规性的严苛要求。例如,某金融机构通过私有云实现交易数据本地加密存储,既符合《数据安全法》要求,又避免了公有云跨租户资源争抢带来的性能波动。
2025年08月05日 6:28
私有云迁移模块:企业数字化转型的"智能搬运工"
在数字化转型浪潮中,私有云迁移模块正成为企业IT架构升级的核心引擎。这个看似简单的"数据搬运"过程,实则是融合资源调度、安全策略、性能优化的系统工程。据统计,私有云迁移因兼顾灵活性与安全性,成为金融、政务等行业的首选方案。
2025年08月05日 6:31
英伟达算力卡巅峰对决:H100、A100与消费级显卡的算力革命
人工智能和高性能计算领域,英伟达(NVIDIA)的GPU算力卡已成为行业标准。本文基于官方技术白皮书和权威测试数据,对当前主流的英伟达算力卡进行专业性能比较,涵盖数据中心级的H100、A100系列以及部分消费级显卡的关键指标,为读者提供选型参考。
2025年08月06日 6:02
租赁算力 vs 自建:AI公司如何科学评估算力需求与成本
在AI技术快速迭代的今天,企业研发AI模型面临的首要挑战就是算力需求评估与成本控制。本文将系统分析AI研发的算力需求特点,揭示租赁算力的合理性,并提供实用的决策框架。
2025年08月07日 3:16