随着AI大模型、元宇宙、高性能计算等领域的爆发式增长,企业对GPU算力的需求呈指数级上升。但直接采购高性能GPU服务器成本高昂(单张A100 GPU售价超10万元),且存在资源闲置风险。在此背景下,算力租赁(通过云端按需租用GPU资源)成为企业降本增效的核心选择。而支撑这一模式高效运行的底层技术,正是虚拟化技术对GPU资源的精细化分配与管理。本文将拆解算力租赁的核心逻辑,并详解虚拟化技术如何实现GPU资源的“按需切割”与“动态调度”。
传统IT架构中,企业需为峰值算力需求采购硬件,导致70%以上的GPU资源在非高峰时段闲置(据Gartner 2024年报告显示)。算力租赁的本质是通过资源共享,将物理GPU的计算能力抽象为可量化、可分配的“算力服务”,用户按使用时长或任务量付费。
但资源共享面临两大挑战:
这两个问题的解决方案,正是虚拟化技术的核心价值所在。
虚拟化技术并非新鲜事物,但其与GPU的结合(即“GPU虚拟化”)是算力租赁落地的关键技术突破。简单来说,GPU虚拟化通过软件层将物理GPU的计算、存储、显存等能力“虚拟化”为多个独立的“虚拟GPU(vGPU)”,每个vGPU可被独立分配给不同用户或任务,就像为一台服务器安装多个“虚拟显卡”。
目前市场主流的GPU虚拟化方案可分为两类:
算力租赁中,用户从提交需求到获得vGPU实例,背后需经历以下关键步骤:
用户通过算力平台(如阿里云GPU云、火山引擎智算服务)提交任务需求(如显存大小、CUDA版本、任务类型)。平台通过需求分析引擎(基于历史数据和实时监控)判断所需vGPU规格(如vGPU显存48GB、支持CUDA 12.3)。
资源管理平台(如OpenStack、华为FusionSphere)根据需求,从物理GPU资源池中“切分”出对应规格的vGPU。例如,若资源池中有两张A100 GPU(单卡80GB显存),当用户需要一张48GB的vGPU时,系统会将其中一张A100的80GB显存划分为两个48GB的vGPU(剩余8GB可用于其他小任务)。
切分后的vGPU会被分配独立的虚拟化上下文(如vGPU ID、显存地址空间),并通过硬件虚拟化单元(如NVIDIA的MIG技术)或软件沙箱限制其访问权限,确保用户无法越界操作其他vGPU或宿主服务器硬件。
任务运行期间,平台实时监控vGPU利用率(如显存占用率、CUDA核心负载)。若任务需要更多资源(如显存不足),系统会自动从资源池中“扩容”一个临时vGPU并挂载到当前实例;任务结束后,vGPU会被回收至资源池,供其他用户复用。
算力租赁的本质是“将GPU从硬件变为服务”,而虚拟化技术则是这一转型的“技术底座”。通过资源池化、隔离分配、动态调度,虚拟化技术不仅解决了资源共享的核心矛盾,更推动了AI、高性能计算等领域的普惠化发展。未来,随着vGPU技术的进一步优化(如更低的性能损耗、更细粒度的切分)和云原生架构的普及,算力租赁有望成为企业数字化转型的“基础设施”。
成都算力租赁入口:https://www.jygpu.com
成都算力租赁官方电话:400-028-0032