英伟达GPU架构演进:从Tesla到Blackwell

JYGPU 极智算
2025年08月19日 2:34

早期架构:奠定基础

Tesla (2006)

Tesla架构是英伟达GPU发展史上的一个里程碑。它首次引入了统一着色器架构,使得GPU能够更灵活地处理图形和通用计算任务。更重要的是,Tesla架构伴随着CUDA(Compute Unified Device Architecture)并行计算平台的发布,这使得开发者能够使用C语言等高级语言直接在GPU上进行编程,极大地拓宽了GPU的应用范围,为后来的通用GPU计算(GPGPU)和深度学习奠定了基础。

Fermi (2010)

Fermi架构在Tesla的基础上进行了大幅改进,旨在更好地支持GPGPU和HPC应用。它引入了ECC(Error Correcting Code)内存支持,增强了双精度浮点运算能力,并改进了缓存层次结构,使其更适合科学计算和数据中心环境。Fermi架构的代表产品是GeForce GTX 480和Tesla M2050。

Kepler (2012)

Kepler架构专注于提升能效比和并行处理能力。它引入了SMX(Streaming Multiprocessor eXtreme)设计,增加了每个流式多处理器中的CUDA核心数量,并优化了时钟频率和功耗。Kepler架构在高性能计算领域取得了显著成功,例如K20X GPU被用于构建“泰坦”(Titan)超级计算机。

Maxwell (2014)

Maxwell架构进一步优化了能效,并改进了流式多处理器(SMM)的设计,提高了每个核心的性能。它在游戏和消费级市场表现出色,同时为后来的深度学习推理奠定了基础。代表产品有GeForce GTX 980。

Pascal (2016)

Pascal架构是英伟达为深度学习和HPC设计的关键架构。它引入了HBM2(High Bandwidth Memory 2)高带宽内存,显著提升了内存带宽,并首次集成了NVLink高速互联技术,实现了GPU之间的高速通信。Pascal架构的Tesla P100是首款专为数据中心设计的GPU,极大地加速了深度学习训练。

深度学习时代:Volta与Ampere

Volta (2017)

Volta架构是英伟达在AI领域的一次重大突破。它首次引入了Tensor Core(张量核心),这是一种专门用于加速深度学习矩阵运算的硬件单元。Tensor Core的引入使得Volta架构在AI训练性能上实现了数量级的提升,彻底改变了深度学习的格局。代表产品是Tesla V100。

Turing (2018)

Turing架构在Volta的基础上,将实时光线追踪(Ray Tracing)和DLSS(Deep Learning Super Sampling)技术引入消费级GPU。它包含了RT Core(光线追踪核心)和改进的Tensor Core,为游戏玩家带来了更逼真的图形效果和AI驱动的性能提升。代表产品是GeForce RTX 20系列。

Ampere (2020)

Ampere架构是英伟达为AI和HPC设计的又一重要架构。它进一步提升了Tensor Core的性能,并引入了第三代Tensor Core,支持更多数据类型。Ampere架构还改进了NVLink和多实例GPU(MIG)技术,使其在数据中心和云端AI推理及训练方面表现卓越。代表产品包括A100 GPU和GeForce RTX 30系列。

AI计算新纪元:Hopper与Blackwell

Hopper (2022)

Hopper架构是英伟达专为大规模AI和HPC工作负载设计的最新架构。它引入了Transformer Engine,进一步加速了Transformer模型(现代AI模型的核心)的训练。Hopper架构还采用了新的第四代Tensor Core和NVLink Switch,实现了前所未有的AI计算性能和扩展性。代表产品是H100 GPU。

Blackwell (2024)

Blackwell架构是英伟达最新的GPU架构,旨在应对万亿参数级AI模型的挑战。它在Hopper的基础上进行了多项创新,包括第二代Transformer Engine、新的NVLink Switch和RAS(可靠性、可用性、可服务性)功能。Blackwell架构的B200 GPU和GB200超级芯片旨在提供前所未有的AI训练和推理性能,进一步巩固英伟达在AI领域的领导地位。

总结:架构创新驱动行业发展

英伟达GPU架构的每一次演进,都不仅仅是性能参数的简单提升,更是对计算范式的深刻理解和前瞻性布局。从最初的图形渲染到通用并行计算,再到深度学习和AI,英伟达通过持续的硬件创新和软件生态建设,不断推动着GPU技术的边界,使其成为驱动现代科技进步不可或缺的核心力量。未来,随着AI和高性能计算需求的持续增长,英伟达的架构创新之路仍将继续,为人类探索更广阔的计算世界提供无限可能。

成都算力租赁入口:https://www.jygpu.com

成都算力租赁官方电话:400-028-0032